
3–1

The LSA1000 and the Ethernet3
Operating on the Ethernet

All LSA1000 functions are controlled via Ethernet, the LAN
(Local Area Network) software standard. The instrument
uses Ethernet’s TCP/IP network protocol, accessed by the
BSD Sockets API. For connecting to PC or network over the
Ethernet, see also Chapter 4 of the accompanying
Operator’s Manual.

This API (Applications Programming Interface) sits above the
TCP/IP protocol stack in all UNIX systems and is also available
in Windows 95 and Windows NT. It is for the most part platform-
independent, and should allow the same source code to compile
and run on each of the supported systems.

WinSock The commonly known WinSock API, derived from the original
BSD Sockets API, may also be used to communicate with BSD
Sockets-based systems. WinSock, for Windows Sockets, is used
by the leading Internet servers.

TCP (Stream Socket) Of the two types of connections supported by BSD Sockets,
UDP and TCP, the LSA1000 uses TCP — also called stream
socket — as its underlying protocol. This is a ‘reliable’ protocol,
which ensures that packets are in the correct sequence and that
none are missing.

VICP The Versatile Instrument Control Protocol (VICP) is the LSA1000
protocol for Ethernet operation. The connection established
between the controlling device, or client, and the LSA1000, or
server, is made using a known port number. Each of the
common Internet protocols uses a predefined port number —
FTP, for example, uses 21, and HTTP 80. The VICP port
number is 1861.

Note: A USB (Universal Serial Bus) port is located on the
instrument’s rear panel even though USB communication is
not supported at this time. It is intended that this
communication protocol will be supported in future LeCroy
software releases.

3–2

The LSA1000 and the Ethernet

The client sends standard ASCII remote commands through the
Ethernet socket, just as they would be sent via GPIB, but with an
8-byte header at the start of each transfer. This header contains
information about the type of block and its length. Block types
include ‘Data with/without EOI’, and Device Clear, and allow
GPIB behavior to be emulated.

Addressing Every Ethernet device has an IP address designated by four
numbers between 0 and 255, separated by periods — for
example, 12.34.56.78. Your LSA1000’s address is set to
172.25.1.2 at the factory but can be changed using the
COMM_NET command.

Standard Messages The following are IEEE 488.1 standard messages that go
beyond mere reconfiguration of the bus and that have an effect
on the operation of the instrument. All except GET are executed
immediately upon reception — not in chronological order.

Ø In response to a universal Device CLear (DCL) or a
Selected Device Clear message (SDC), the LSA1000 clears
the input or output buffers, aborts the interpretation of the
current command (if any) and clears any pending
commands. Status registers and status-enable registers are
not cleared. Although DCL has an immediate effect it can
take several seconds to execute this command if the
instrument is busy.

Ø The Group Execute Trigger message (GET) causes the
LSA1000 to arm the trigger system. It is functionally
identical to the “*TRG” command.

3–3

Programming Ethernet Transfers
Data Transfer Header The format of the header sent before each data block, both to and

from the LSA1000, is set out in the following table:

Byte # Purpose
0 Operat ion
1 Header Version
2 Spare (reserved for future expansion)
3 Spare (reserved for future expansion)
4 Block Length, (bytes of data) , MSB
5 Block Length (bytes of data)
6 Block Length (bytes of data)
7 Block Length, (bytes of data) , LSB

The ‘Operation’ bits and meanings are:

D7 D6 D5 D4 D3 D2 D1 D0
DATA REMOTE LOCKOUT CLEAR SRQ Reserved Reserved EOI

Data Bit Mnemonic Purpose
D7 DATA Data block (D0 indicates termination with/without EOI)

D6 REMOTE Remote Mode

D5 LOCKOUT Local Lockout (Lockout front-panel)

D4 CLEAR Device Clear (if sent with data, clear occurs before data block is passed to
parser)

D3 SRQ SRQ (Device to PC only)

D2..D1 Reserved Reserved for future expansion

D0 EOI Block terminated in EOI
Logic "1" = use → EOI terminator
Logic "0" = no EOI terminator

It is possible that the LSA1000 and the controlling application
will get out of sync with each other. For this, a recovery
mechanism has been defined, and the controller at the end of

3–4

The LSA1000 and the Ethernet

the connection that detects the problem is responsible for
closing the socket and re-opening it.

Problem Solving The TCP ‘NAGLE’ algorithm: One of the algorithms used in
the TCP layer of the TCP/IP stack is the cause of important
remote control performance problems. This algorithm has the
function of buffering up small packets and sending them only
when a ‘large’ packet has been filled or a time limit of 200 ms
has expired. Even a simple query is bound by these limitations.

However, when NAGLE is turned off, this ‘round-trip’ time is
reduced by approximately one hundred. The following function
call disables the algorithm when using the standard BSD
Sockets API of the ‘C’ language (equivalent function calls may
exist in other environments).

const int disable = 1;

if (0 != setsockopt(socket, IPPROTO_TCP,
TCP_NODELAY, (char*)&disable, sizeof(disable)))

{

 … failed …

}

Multiple Client Support: The current design of network remote
control allows support of only one client at a time. This applies
equally to the operation of the LSA1000. And because of this the
number of simultaneous connections that can be made with the
instrument has been restricted to one.

This can cause problems if a remote client disconnects or hangs
without closing its connection (socket). Unfortunately there is no
‘clean’ way for the server to know when this has happened. If the
LSA1000 seems to be refusing connections then a reboot may
be required.

This problem is due to be addressed in a future revision of the
protocol.

3–5

Problem Solving C’ Language: The following sample ‘C’ code allows a simple dialog
to be established with the LSA1000. The sockets are used in a
blocking mode (processing is suspended while a response is
awaited). Non-blocking operation is beyond the scope of this
manual, but is covered in almost any BSD sockets reference.

/*--

LeCroy LSA1000 BSD Sockets Remote Control Example

Overview:
This example shows how to send a remote query

to a LSA1000
and read it's response. It should be used as

a model for more
complex remote control systems.

Requirements:
Microsoft Visual C++ 4.x, 5.0 compiler
Windows 95/NT host

Version: 1.0, August 14th

Notes:
Ensure that the SERVER_ADDRESS correctly

reflects the address of
the device under control.

 --
------------------*/

#include "windows.h"
#include <stdio.h>

#define SERVER_PORT 1861
#define SERVER_ADDRESS "172.25.1.2"
#define HEADER_LENGTH 8

#define FLAG_EOI 0x80 + 0x01
#define FLAG_NO_EOI 0x80

int socketFd; /* client socket handle */

/* function prototypes */
BOOL connectToScope();
void disconnectFromScope();
int readString(char *replyBuf, int userBufferSize);
BOOL sendString(char *message, int bytesToSend, BOOL
eoiTermination);

/* main: program entry point */
int main()

3–6

The LSA1000 and the Ethernet

{
 char replyBuf[81];

 connectToScope();
 sendString("*idn?\n", 6, TRUE);
 readString(replyBuf, 80);
 disconnectFromScope();

 printf("Scope's reply: [%s]\n", replyBuf);

 return(0);
}

/* connectToScope: connect to a network device */
BOOL connectToScope()
{
 SOCKADDR_IN serverAddr; /* server's
socket address */
 int sockAddrSize = sizeof (SOCKADDR); /* size of
socket address structures */

 /* one-time initialization of WinSock
(not required on UNIX platforms) */
int err;
WORD wVersionRequested = MAKEWORD(1, 1);
WSADATA wsaData;

err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0)
{

 printf("ERROR: could not initialize WinSock\n");
 return(FALSE);
}

 /* build server socket address */
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT);

if ((serverAddr.sin_addr.s_addr =
inet_addr(SERVER_ADDRESS)) == -1)

{
 printf("ERROR: Bad server address\n");
 return(FALSE);

}

 /* create client's socket */
 socketFd = socket(AF_INET, SOCK_STREAM, 0);

if (socketFd == INVALID_SOCKET)
{
 printf("ERROR: socket() failed, error code =

%d\n", WSAGetLastError());
 return(FALSE);

}

 /* connect to server (scope) */

3–7

if ((connect(socketFd, (SOCKADDR FAR *) &serverAddr,
sockAddrSize)) == SOCKET_ERROR)

{
 printf("ERROR: socket() failed, error code =
%d\n", WSAGetLastError());

 return(FALSE);
}

 /* success */
return(TRUE);

}

/* disconnectFromScope: disconnect from a network device */
void disconnectFromScope()
{
 closesocket(socketFd);
}

/* sendString: send a string to the device, with or without
EOI termination */
BOOL sendString(char *message, int bytesToSend, BOOL
eoiTermination)
{
 static unsigned char headerBuf[HEADER_LENGTH];
 int bytesSent;

 /* send header */
if(eoiTermination)

 headerBuf[0] = FLAG_EOI;
else
 headerBuf[0] = FLAG_NO_EOI;
headerBuf[1] = 1; /* header

version 1 */
headerBuf[2] = 0x00; /* unused */
headerBuf[3] = 0x00; /* unused */
*((unsigned long *) &headerBuf[4]) =

htonl(bytesToSend); /* message size */

if (send(socketFd, (char *) headerBuf,
HEADER_LENGTH, 0) != HEADER_LENGTH)

{
 printf("ERROR: could not send header\n");

 return(FALSE);
}

 /* send contents of message */
bytesSent = send(socketFd, message, bytesToSend, 0);
if ((bytesSent == ERROR) || (bytesSent !=

bytesToSend))
{
 printf("ERROR: 'send' failed\n");
 return(FALSE);
}

 return(TRUE);
}

3–8

The LSA1000 and the Ethernet

/* readString: read a string from the device into a user-
supplied buffer */
int readString(char *replyBuf, int userBufferSize)
{

int blockSize = 0, thisBlockSize, bytesReceived;
BOOL blockEOITerminated = FALSE;
unsigned char headerBuf[HEADER_LENGTH];

/* read the header */
if(recv(socketFd, (char *) headerBuf,

HEADER_LENGTH, 0) == 8)
{

 /* extract the number of bytes contained
in this packet */

 blockSize = ntohl(*((unsigned long *)
&headerBuf[4]));

 /* check the integrity of the header */
 if(!((headerBuf[0] == FLAG_EOI ||

headerBuf[0] == FLAG_NO_EOI) &&
headerBuf[1] == 0x01))

 {
 /* error state, cannot recognise

header since we
 are out of sync, need to

close & reopen the socket */
disconnectFromScope();
connectToScope();
return(0);

 }

 /* inform the caller of the EOI state */
 if(headerBuf[0] == 0xaa)
 blockEOITerminated = TRUE;

}

/* read the data block */
thisBlockSize = min(userBufferSize,

blockSize);

bytesReceived = recv(socketFd, replyBuf,
thisBlockSize, 0);

if(bytesReceived != thisBlockSize)
 printf("ERROR: truncated read\n");
else

 replyBuf[bytesReceived] = '\0'; /*
ensure string termination */

return(bytesReceived);
}

3–1

The LSA1000 and the Ethernet3

